【精品】各种污水处理工艺动画演示/常见污水处理工艺汇总

睿源环保 2021-01-11 11:55:44

污水处理工艺流程是用于某种污水处理的工艺方法的组合。通常根据污水的水质和水量,回收的经济价值,排放标准及其他社会、经济条件,经过分析和比较,必要时,还需要进行试验研究,决定所采用的处理流程。一般原则是:改革工艺,减少污染,回收利用,综合防治,技术先进,经济合理等。在流程选择时应注重整体最优,而不只是追求某一环节的最优。



















来源:化工707



常见污水处理工艺汇总





1
物理法:


1.沉淀法:主要去除废水中无机颗粒及SS

2.过滤法:主要去除废水中SS和油类物质等

3.隔油:去除可浮油和分散油

4.气浮法:油水分离、有用物质的回收及相对密度接近于1(水的密度近似1)的悬浮固体

5.离心分离:微小SS的去除

6.磁力分离:去除沉淀法难以去除的SS和胶体等

2
化学法:


1.混凝沉淀法:去除胶体及细微SS

2.中和法:酸碱废水的处理

3.氧化还原法:有毒物质、难生物降解物质的去除

4.化学沉淀法:重金属离子、硫离子、硫酸根离子、磷酸根、铵根等的去除

3
物理化学法:


1.吸附法:少量重金属离子、难生物降解有机物、脱色除臭等

2.离子交换法:回收贵重金属,放射性废水、有机废水等

3.萃取法:难生物降解有机物、重金属离子等

4.吹脱和汽提:溶解性和易挥发物质的去除。


重点介绍


(随着各种工艺不断改进,原有缺点不断被修正,因此只列出各种工艺的优点)

4
生物法


1.活性污泥法:废水生物处理中微生物(micro-organism)悬浮在水中的各种方法的统称。


(1)SBR法

序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。


工艺流程图:



SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。


优点:

1)工艺简单,节省费用

2)理想的推流过程使生化反应推力大、效率高

3)运行方式灵活,脱氮除磷效果好

4)防治污泥膨胀的最好工艺

5)耐冲击负荷、处理能力强


(2)CASS法

CASS法是SBR法的改进型,特点是占地小、运行费用低、技术成熟、工艺稳定。


CASS法是在CASS反应池前部设置生物选择区,后部设置可升降的自动滗水装置。


工艺流程图:



(3)AO法

AO工艺法也叫厌氧好氧工艺法,A(Anacrobic)是厌氧段,用与脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。


工艺流程图:



优点:

1)系统简单,运行费低,占地小

2)以原污水中的含碳有机物和内源代谢产物为碳源,节省了投加外碳源的费用

3)好氧池在后,可进一步去除有机物

4)缺氧池在先,由于反硝化消耗了部分碳源有机物,可减轻好氧池负荷

5)反硝化产生的碱度可补偿硝化过程对碱度的消耗


(4)AAO法

AAO法又称A2O法,是英文Anaerobic-Anoxic-Oxic第一个字母的简称(厌氧-缺氧-好氧法),是一种常用的污水处理工艺,可用于二级污水处理或三级污水处理,以及中水回用,具有良好的脱氮除磷效果。


工艺流程图:



优点:

1)本工艺在系统上可以称为最简单的同步脱氮除磷工艺,总水力停留时间少于其他类工艺


2)在厌氧(缺氧)、好氧交替运行条件下,丝状菌不能大量增殖,不易发生污泥丝状膨胀,SVI值一般小于100


3)污泥含磷高,具有较高肥效


4)运行中勿需投药,两个A段只用轻轻搅拌,以不增加溶解氧为度,运行费用低


(5)氧化沟法

氧化沟是活性污泥法的一种变型,其曝气池呈封闭的沟渠型,所以它在水力流态上不同于传统的活性污泥法,它是一种首尾相连的循环流曝气沟渠,污水渗入其中得到净化,最早的氧化沟渠不是由钢筋混凝土建成的,而是加以护坡处理的土沟渠,是间歇进水间歇曝气的,从这一点上来说,氧化沟最早是以序批方式处理污水的技术。


工艺流程图:



优点:

除具有一般活性污泥法的优点外,还具有许多独特的特性:


1)流程简化,一般不需设初沉池。氧化沟水力停留时间和污泥龄较长,有机物去除较为彻底,剩余污泥高度稳定,污泥一般不需厌氧消化。


2)氧化沟具有推流特性,因此沿池长方向具有溶解氧梯度,分别形成好氧、缺氧和厌氧区。通过合理设计和控制可使N和P得到较好地去除。


3)操控灵活,如曝气强度可以通过调节转速或通过出水溢流堰来改变曝气机的淹没深度;交替式氧化沟各沟间交替运行的动态控制等。


4)在技术上具有净化程度高、耐冲击、运行稳定可靠、操作简单、运行管理方便、维修简单、投资少、能耗低等特点。


2.生物膜法:利用固着在惰性材料表面的膜状生物群落处理污水或废气的方法。生物滤池法、生物接触氧化法和生物转盘法均属于此种方法。


(1)生物滤池

一种用于处理污水的生物反应器,内部填充有惰性过滤材料,材料表面生长生物群落,用以处理污染物。




优点:

1)生物滤池的处理效果非常好,在任何季节都能满足各地最严格的环保要求。


2)不产生二次污染。


3)微生物能够依靠填料中的有机质生长,无须另外投加营养剂。因此停工后再使用启动快,且能迅速恢复最佳使用效果。


4)生物滤池缓冲容量大,能自动调节浓度高峰使微生物始终正常工作,耐冲击负荷的能力强。


5)运行采用全自动控制,非常稳定,无须人工操作。易损部件少,维护管理非常简单,基本可以实现无人管理,工人只需巡视是否有机器发生故障。


6)生物滤池的池体采用组装式,便于运输和安装;在增加处理容量时只需添加组件,易于实施;也便于气 源分散条件下的分别处理。 


7)此类过滤形式的生物滤池能耗非常低,在运行半年之后滤池的压力损失也只有500Pa左右。


(2)生物转盘

一种好氧处理污水的生物反应器,由水槽和一组圆盘构成,圆盘下部浸没在水中,圆盘上部暴露在空气中,表面生长有生物群落,转动的转盘周而复始接触污水和空气中的氧,使污水得到净化。



优点:

1)具有占地面积小、结构紧凑

2)能耗低、处理效率高

3)管理方便、操作容易

特别适用于中小型畜禽加工厂污水处理


(3)生物接触氧化池

结构包括池体,填料,布水装置,曝气装置。工作原理为:在曝气池中设置填料,将其作为生物膜的载体。待处理的废水经充氧后以一定流速流经填料,与生物膜接触,生物膜与悬浮的活性污泥共同作用,达到净化废水的作用。



优点:

1)容积负荷高,耐冲击负荷能力强

2)具有膜法的优点,剩余污泥量少 

3)具有活性污泥法的优点,辅以机械设备供氧,生物活性高,泥龄短

4)能分解其它生物处理难分解的物质

5)容易管理,消除污泥上浮和膨胀等弊端


3. 厌氧生物处理法:包括厌氧消化、水解酸化池、UASB等。


厌氧生物处理法是利用兼性厌氧菌和专性厌氧菌将污水中大分子有机物降解为低分子化合物,进而转化为甲烷、二氧化碳的有机污水处理方法,分为酸性消化和碱性消化两个阶段。


在酸性消化阶段。由产酸菌分泌的外酶作用,使大分子有机物变成简单的有机酸和醇类、醛类氨、二氧化碳等;在碱性消化阶段,酸性消化的代谢产物在甲烷细菌作用下进一步分解成甲烷、二氧化碳等构成的生物气体。

这种处理方法主要用于对高浓度的有机废水和粪便污水等处理。



优点:

1)能耗低

2)可回收生物能源(沼气)

3)每去除单位质量底物产生的微生物(污泥)少

4)整个过程不需要氧气,因而不受传氧能力限制,对有机物具有很高的负载力


4.自然条件下的生物处理法


(1)稳定塘

将土地进行适当的人工修整,建成池塘,并设置围堤和防渗层,依靠塘内生长的微生物来处理污水。



优点:

1)能充分利用地形,结构简单,建设费用低。

2)可实现污水资源化和污水回收及再用,实现水循环,既节省了水资源,又获得了经济收益。

3)处理能耗低,运行维护方便,成本低。

4)美化环境,形成生态景观。

5)污泥产量少。

6)能承受污水水量大范围的波动,其适应能力和抗冲击和能力强。


(2)土地处理法

用土壤和植物改善水质的方法的统称。同时利用废水的水分和养分滋养土地。


土地处理法主要有灌溉、漫灌和高灌率渗透三个方法。


现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。 


一级处理,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。 


二级处理,主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准。 


三级处理,进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗分析法等。 


整个过程为通过粗格栅的原污水经过污水提升泵提升后,经过格栅或者砂滤器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。






来源:水博网


来源:泵管家


一、二、三级污水处理工艺,超细致讲解!看完你就是污水处理专家了!

2016-06-21 water8848




一、二、三级污水处理工艺,超细致讲解!






小七导读:


城市污水处理技术作为环境学科的一个分支 ,就我国目前的状况来看, 整体上已有了很大的进步 ,但还落后于我国城市发展的水平。近些年来, 虽然研究 、开发了一些设备和工艺 ,但总体上主要是借鉴和引进国外的一些先进工艺、经验和设备。以前运用较多和正在开发、研究的城市化工厂污水通常为一级、二级 、三级处理工艺流程,下面和小七一起来看看吧。













1污水处理基本方法按处理方法的性质分为:








1)物理方法:格栅过滤、沉淀法、浮选法、离心分离、膜分离法等

2)化学方法:混凝、化学沉淀、中和、萃取、氧化还原、电解等

3)生物方法:好氧、厌氧法








2按不同的处理程度和处理任务可分为:








1)一级处理:机械处理

2)二级处理:主体工艺为生化处理

3)三级处理:控制富营养化和重新回用








3污水处理工艺流程














污水的一级处理








1.格栅

分类:按形状可分为平面格栅、曲面格栅;按栅条的间隙分为粗格栅、中格栅、细格栅。


工作原理:由一种独特的耙齿厂装配成一组回转格栅链。在电机减速器的驱动下,耙齿链进行逆水流方向回转运动。耙齿链运转到设备的上部时,由于槽轮和弯轨的导向,使每组耙齿之间产生相对自清运动,绝大部分固体物质靠重力落下,而另一部分则依靠清扫器的反向运动把粘在耙齿上的杂物清扫干净,这样的原理。

2.沉砂池

作用:从污水中分离密度较大的无机颗粒,保护水泵和管道免受磨损,缩小污泥处理构筑物容积,提高污泥有机组分的含率,提高污泥作为肥料的价值。


种类:平流式(重力式)沉砂池、曝气式沉砂池


3.调节池

作用:为了保证后续处理构筑物或设备的正常运行,需对污水的水量和水质进行调节;酸性污水和碱性污水在调节池内进行混合,可达到中和的目的;短期排出的高温污水也可用调节的办法来平衡水温。


4.沉淀池

常见的几种沉淀池类型:平流式沉淀池、竖流式沉淀池、幅流式沉淀池、斜流式沉淀池







几种沉淀池比较:








(1)平流式池:构造简单,沉淀效果较好,但占地面积较大,排泥存在的问题较多,目前大、中、小型污水处理厂均有采用;


(2)竖流式池:占地面积小,排泥较方便,且便于管理,然而池深过大,施工困难,造价高,因此一般仅适用于中小型污水处理厂使用;


(3)辐流式池:最适宜于大型水处理厂采用,有定型的排泥机械,运行效果较好,但要求较高的施工质量和管理水平;


(4)斜流式池:主要适用于初沉池,在给水处理中应用较广,沉淀效率高,停留时间短,占地少,缺点是容易滋生藻类等,排泥困难、易堵塞,维护不便。


(5)气浮:

作用:气浮法又称为浮选法,它是在污水中通入空气,产生微小气泡作为载体,使污水中的乳化油、微小悬浮物等污染物黏附在气泡上。利用气泡的浮升作用上浮到水面,通过收集水面上的泡沫或浮渣达到分离杂质、净化污水的目的。








污水的二级处理








1.污水的二级处理又称为生物处理

污水的生物处理就是利用微生物的氧化分解及转化功能,以污水的有机物(少数以无机物)作为微生物的营养物质,采取一定的人工措施,创造一种可控制的环境,通过微生物的代谢作用,使污水中的污染物质被降解、转化,污水得以净化。


(1)污水生物处理分类:好氧生物处理、厌(兼)氧生物处理

对于好氧生物处理中的传统活性污泥法、氧化沟、序批式活性污泥法统称为活性污泥法;其中生物滤池、生物转盘、流化床、气提式反应器(ABS)统称为生物膜法。


2.活性污泥法工艺流程其中工艺有:

(1)传统的SBR法:SBR工艺即间歇活性污泥法,它由一个或多个曝气反应池组成,污水分批进入池中,经活性污泥净化后 ,上清液排出池外即完成一个运行周期。每个工作周期顺序完成进水 、反应 、沉淀 、排放 个工艺过程。


SBR工艺的特点是具有一定的调节均化功能,可缓解进水水质、水量波动对系统带来的不稳定性。工艺处理简单,处理构筑物少,曝气反应池集曝气、沉淀、污泥回流于一体,可省去初沉池、二沉池及污泥回流系统,且污泥量少,易于脱水,控制一定的工艺条件可达到较好的除磷效果,但也存在自动控制和连续在线分析仪器仪表要求高的缺点。


(2)CASS工艺:CASS工艺是一种连续进水式SBR曝气系统,不仅具有SBR工艺简单可靠、运行方式灵活、自动化程度高的特点,且除磷脱氮效果明显。这一功能主要实现于CASS池通过隔墙将反应池分为功能不同的区域 ,在各分格中溶解氧、污泥浓度和有机负荷不同 ,各池中的生物也不相同。整个过程实现了连续进、出水。同时在传统的SBR池前或池中设置了选择器及厌氧区 提高了除磷脱氮效果(见图2) 

 


(3)MSBR 法:MSBR工艺是20世纪80,年代初期发展起来的污水处理工艺 经过不断改进和发展,目前最新的工艺是第三代工艺,其工作原理如图3所示。

 


(4)UNITANK 系统

SEGHERS 公司提出的 UNITANK 系统是 SBR法的又一种变形和发展,它集合了 SBR和传统活性污泥法的优点 一体化设计 不仅具有SBR系统的主要特点 还可以像传统活性污泥法那样在恒定水位下连续运行 。


UNITANK 系统的特点是构筑物结构紧凑 ,一体化 。可根据好氧过程的 DO 检测与缺氧和厌氧过程的ORP在线检测 ,通过改变供气量 切换进出水阀门 ,改变好氧 、缺氧及厌氧的反应时间等 高水平地实现系统的时间和空间控制 ,高效地去除污水中的有机物及脱氮除磷 ,且水力负荷稳定 。


交替改变进水点 ,可以相应改善系统各段的污泥负荷 ,进而改善污泥的沉降性能见图4) 。脱氮除磷过程更能通过抑制丝状菌生长来控制污泥膨胀。个池可以被完全加盖封闭或建在地下,废气可以收集处理,既有利于布置 、保温,又避免系统对周围环境产生不良影响见图 5) 


目前,我国石家庄高新技术产业开发区污水处理厂日处理污水 10 万t ,就是采用的该工艺 。


(5)AB法是吸附-生物降解工艺的简称,是由德国亚琛工业大学(Aachen)宾克(Bohnke)教授于20世纪70年代中期开创。该工艺于80 年代初应用于工程实践


目前国内已有多家城市污水处理厂采用了AB 法工艺。与传统活性污泥法相比,AB法主要有下列特征:未设初沉池,由吸附池和中间沉淀池组成的A段为一级处理系统;B段由曝气池和二次沉淀池组成;AB两段各自拥有独立的污泥回流系统,两段完全分开,各自由独特的微生物群体,有利于功能的稳定。


AB法工艺:

其他其他SBR演变工艺:ICEAS工艺、IDEA工艺、DAT-IAT工艺


3.生物膜法

好氧生物膜法是根据土壤自净的原理发展起来的。从好氧微生物对有机物降解过程的基本原理上分析,生物膜法和活性污泥法是相同的,两者主要不同在于活性污泥法是靠曝气池中悬浮流动着的活性污泥来分解有机物的,而生物膜法则是主要依靠固着于载体表面的微生物膜来净化有机物。


(1)厌氧生物处理的机理

可分为四个阶段:水解阶段、酸化阶段(也叫发酵阶段)、产乙酸阶段、产甲烷阶段。

  • 水解阶段:水解细菌将不溶性有机物转变成可溶性有机物,将高分子溶性有机物转变成小分子有机物(通过细菌胞外酶作用)

  • 酸化阶段:水解阶段产生的小分子水解产物在酸化菌的细胞内转化为更简单的化合物并分泌到细胞外,这一阶段的主要产物有VFA、醇类、乳酸、CO2NH3H2S等。与此同时,酸化菌也利用部分物质合成新的细胞物质。

  • 产乙酸阶段:在此阶段,酸化阶段的产物被进一步转化为乙酸、H2、碳酸等以及新的细胞物质。

  • 产甲烷阶段:在此阶段,乙酸、H2、碳酸、甲酸和甲醇等被转化为CH4CO2和新的细胞物质。







三级处理工艺








近年来我国已经开始重视三级处理工艺的研究开发,目前用得比较多的三级处理工艺可以分为常规工艺、MBR 技术和LM深度处理技术。


1.常规工艺

常规的三级处理工艺是在生物处理之后增加混

凝、过滤、消毒等常规处理过程 ,有砂滤、膜滤、反渗

透、UV 消毒、液氯、臭氧消毒等 。一般来说这些处理

方式单位水处理成本比较低在经济上比较可行。


2.MBR技术

MBR 技术又称为膜生物反应器技术,利用了膜分离的选择性和高效性,同时又利用了生物处理工程的有效性和彻底性,将水中的有害物质最大限度地除去。MBR 工艺的特点是用膜分离系统代替了普通活性污泥法中的二沉池减少了传统工艺大部分的处理单位 ,节省了大量投资,而且耗能和一般传统的水处理工艺相近。污水在处理设备中的停留时间短,对CODNH3-N 的去除率极高 ,出水水质达到了生活杂用水水质的标准。


3.LM 深度处理工艺

LM深度处理工艺是一种全新的生态处理工艺 ,在厌氧池加好氧池的基础上加入了改进的曝气氧化塘和高效湿地两个深度处理单元使出水水质达到了生活杂用水的标准。其工艺流程是生物厌氧池—封闭好氧池—开放好氧池—澄清池—人工湿地—UV消毒—蓄水池—回用,或者以接触氧化池和生态氧化槽代替封闭好氧池和开放好氧池。LM 深度处理工艺的特点是剩余污泥少、运行费用低、管理方便,还具有美化景观的功能,该方法和其他水处理工艺相比比较经济。


4.运用状况及其发展趋势

目前我国的三级处理工艺中运用一般的常规处理工艺较多现阶段 MBR方法也有了广泛运用比如在北京长安街生活小区的回用水处理。


就我国目前的实际情况来看 ,由于常规工艺处理比较方便 ,且应用技术也较成熟一般在选取工艺时仍选用常规处理工艺。国内外目前广泛研究的主要是通过微滤和反渗透技术来处理二级处理后的污水以达到回用水的标准,图 10 是该处理工艺流程的典型例子。湿地系统在国外有着广泛的应用 ,目前我国也开始了这方面的研究工作 。由于我国环境污染加剧,淡水资源巨减,相信三级处理工艺必将越来越受到重视。



技术 | 看完你就是污水处理专家了!

来源: 晨曦 化工707 化工707


化工、技术、未来!化工路上,一起走!

 


 

 


污水处理的需求是伴随着城市的诞生而产生的。城市污水处理技术,历经数百年变迁,从最初的一级处理发展到现在的三级处理,从简单的消毒沉淀到有机物去除、脱氮除磷再到深度处理回用。其中,活性污泥法的问世更是具有划时代的意义,而今年正值活性污泥法诞生100周年。城市污水处理技术今后究竟将如何发展?对此,不如先让我们回顾一下那些年城市污水处理走过的路。
 


  一级处理阶段


  城市污水处理历史可追溯到古罗马时期,那个时期环境容量大,水体的自净能力也能够满足人类的用水需求,人们仅需考虑排水问题即可。而后,城市化进程加快,生活污水通过传播细菌引发了传染病的蔓延,出于健康的考虑,人类开始对排放的生活污水处进行处理。早期的处理方式采用石灰、明矾等进行沉淀或用漂白粉进行消毒。明代晚期,我国已有污水净化装置。但由于当时需求性不强,我国生活污水仍以农业灌溉为主。1762年,英国开始采用石灰及金属盐类等处理城市污水。


  二级处理阶段

  有机物去除工艺


  生物膜法

  十八世纪中叶,欧洲工业革命开始,其中,城市生活污水中的有机物成为去除重点。1881年,法国科学家发明了第一座生物反应器,也是第一座厌氧生物处理池—moris池诞生,拉开了生物法处理污水的序幕。1893年,第一座生物滤池在英国Wales投入使用,并迅速在欧洲北美等国家推广。技术的发展,推动了标准的产生。1912年,英国皇家污水处理委员会提出以BOD5来评价水质的污染程度。


  活性污泥法

  1914年,Arden和Lokett在英国化学工学会上发表了一篇关于活性污泥法的论文,并于同年在英国曼彻斯特市开创了世界上第一座活性污泥法污水处理试验厂。两年后,美国正式建立了第一座活性污泥法污水处理厂。活性污泥法的诞生,奠定了未来100年间城市污水处理技术的基础。

  活性污泥法诞生之初,采用的是充-排式工艺,由于当时自动控制技术与设备条件相对落后,导致其操作繁琐,易于堵塞,与生物滤池相比并无明显优势。之后连续进水的推流式活性污泥法(CAs法)(如图1)出现后很快就将其取代,但由于推流式反应器中污泥耗氧速度沿池长是变化的,供氧速率难以与其配合,活性污泥法又面临局部供氧不足的难题。1936年提出的渐曝气活性污泥法(TAAs)和1942年提出的阶段曝气法(SFAS),分别从曝气方式及进水方式上改善了供氧平衡。1950年,美国的麦金尼提出了完全混合式活性污泥法。该方法通过改变活性污泥微生物群的生存方式,使其适应曝气池中因基质浓度的梯度变化,有效解决了污泥膨胀的问题。

  随着在实际生产生的广泛应用和技术上的不断革新改进,20世纪40-60年代,活性污泥法逐渐取代了生物膜法,成为污水处理的主流工艺。

  1921年,活性污泥法传播到中国,中国建设了第一座污水处理厂—上海北区污水处理厂。1926年及1927年又分别建设了上海东区及西区污水厂,当时3座水厂的日处理量共为3.55万吨。


  脱氮除磷工艺

  20世纪50年代,水体富营养化问题凸显,脱氮除磷成为污水处理的另一主要诉求。于是,在活性污泥法的基础上衍生出了一系列的脱氮除磷工艺。


  除磷工艺

  50年代初,摄磷菌被发现并用于除磷。(如图2)

脱氮工艺

  1969年,美国的Barth提出采用三段法除氮(如图3),第一段是好氧段,主要去除有机物,第二段加碱硝化,第三段是厌氧反硝化,除氮。

  1973年,Barnard在原有工艺基础上,将缺氧和好氧反应器完全分隔,污泥回流到缺氧反应器,并添加了内回流装置,缩短了工艺流程,也就现在常说的缺氧好氧(A/O)工艺(如图4)。

  A2O工艺

  70年代,美国专家在A/O工艺的基础上,再加上除磷就成了A2O工艺(如图5)。我国1986年建厂的广州大坦沙污水处理厂,采用的就是A2O工艺,当时的设计处理水量为15万吨,是当时世界上最大的采用A2O工艺的污水处理厂。

  氧化沟工艺

  A2O工艺是将生物处理厌氧段和好氧段进行了空间分割,而氧化沟则为封闭的沟渠型结构,结合了推流式和完全混合式活性污泥法的特点,集曝气、沉淀和污泥稳定于一体。污水和活性污泥的混合液不断地循环流动,系统中能够形成好氧区和缺氧区,进而实现生物脱氮除磷(如图6)。氧化沟白天进水曝气,夜间用作沉淀池。活性污泥法相比 , 其具有处理工艺及构筑物简单、泥龄长、剩余污泥少且容易脱水、处理效果稳定等优势。

  1953年,荷兰的公共卫生工程研究协会的Pasveer研究所提出了氧化沟工艺,也被称为“帕斯维尔沟”。1954年,在荷兰的伏肖汀(Voorshoten)建造了第一座氧化沟污水处理厂,当时服务人口仅为360人。60 年代,这项技术在欧洲、北美和南非等各国得到了迅速推广和应用。据统计,到1977年为止,在西欧有超过2000多座的帕斯维尔型氧化沟投入运行。

  1967年,荷兰DHV公司开发研制了卡鲁塞尔(Carroussel)氧化沟。它是一个由多渠串联组成的氧化沟系统。卡鲁塞尔氧化沟的发展经历了普通卡鲁塞尔氧化沟、卡鲁塞尔2000氧化沟和卡鲁塞尔3000氧化沟三个阶段。

  1970年,美国的Envirex公司投放生产了奥贝尔(Orbal)氧化沟。它由3条同心园形或椭圆形渠道组成,各渠道之间相通,进水先引入最外的渠道,在其中不断循环的同时,依次进入下一个渠道,相当于一系列完全混合反应池串联在一起,最后从中心的渠道排出。

  交替式工作氧化沟是由丹麦克鲁格(Kruger)公司研制,该工艺造价低,易于维护,通常有双沟交替和三沟交替(T型氧化沟)的氧化沟系统和半交替工作式氧化沟。


  两段法工艺

  早期的两段法只是将一套活性污泥法的两组构筑物串联,一段和二段曝气池体积相同,且多合并建设,大部分有机物在第一段被吸附降解,第二段的污泥负荷很低,其出水水质要优于相同体积曝气池的单级活性污泥法(如图7)。然而,由于第一段曝气池体积减小了一倍,相当于污泥负荷增加了一倍,处在易发生污泥膨胀的阶段,运行管理较为困难。

  20世纪70年代中期,德国的Botho Bohnke教授开发了AB工艺(如图8)。该工艺在传统两段法的基础上进一步提高了第一段即A段的污泥负荷,以高负荷、短泥龄的方式运行,而B段与常规活性污泥法相似,负荷较低,泥龄较长,A段由于泥龄短、泥量大对磷的去除效果很好,经A段去除了大量的有机物以后B段的体积可大大减小,其低负荷的运行方式可提高出水水质。但是由于A段去除了大量的有机物导致B段碳源缺失,所以在处理低浓度的城市污水时该工艺的优势并不明显。

  其后,为了解决脱氮时硝化菌需要长泥龄,除磷时聚磷微生物需要短泥龄的矛盾,开发了AO-A2O工艺(如图9)。该工艺由两段相对独立的脱氮和除磷工艺组成,第一段泥龄短,主要用于除磷,第二段泥龄长、负荷低,用于脱氮。

  在AO-A2O工艺基础上奥地利研发出了Hybrid工艺(如图10),该工艺的两段之间有三个内回流装置,可以为第一段曝气池提供硝态氮、硝化菌以及为第二段曝气池提供碳源。第一段主要是去除有机物和磷,第二段是硝化功能,并靠第一段曝气池回流混合液进行反硝化脱氮。

  SBR工艺

  序批式活性污泥法(SBR)工艺是在时间上将厌氧段与好氧段进行分割。20 世纪70 年代初由美国Irvine公司开发。它在流程上只有一个基本单元,集调节池、曝气池和二沉池的功能于一池,进行水质水量调节、微生物降解有机物和固液分离等。经典 SBR 反应器的运行过程为:进水→曝气→沉淀→滗水→待机(如图11、 12)。

  80 年代初,连续进水的 ICEAS 工艺诞生(如图13)。该工艺在传统的SBR工艺基础上,在反应池中增加一道隔墙 ,将反应池分隔为小体积的预反应区和大体积的主反应区,污水连续流入预反应区,然后通过隔墙下端的小孔以层流速度进入主反应区,解决了间歇式进水的问题。

  随后, Goranzy 教授开发了 CASS /CAST 工艺。与ICEAS工艺类似,在反应池前段增加了一个选择段,污水先与来自主反应区的回流混合液在选择段混合,在厌氧条件下,选择段相当于前置厌氧池,为高效除磷创造了有利条件。

  90 年代,比利时的西格斯公司在三沟式氧化沟的基础上开发了 UNITANK 系统。它由 3 个矩形池组成,其中外边两侧的矩形池既可做曝气池,又可做沉淀池,中间一个矩形池只做曝气池该工艺把传统 SBR的时间推流与连续系统的空间推流有效地结合了起来。

  MSBR法即改良型的SBR( Modified SBR),采用单池多格方式,结合了传统活性污泥法和SBR技术的优点。反应器由曝气格和两个交替序批处理格组成。主曝气格在整个运行周期过程中保持连续曝气,而每半个周期过程中,两个序批处理格交替分别作为SBR和澄清池。该工艺可连续进水且可使用更少的连接管、泵和阀门。


  脱氮除磷新工艺

  近几十年,能源、资源的短缺已经引起了广泛的关注,进一步脱氮除磷及对能源节约及资源回收的需求成为了污水处理工艺发展的主流方向。一批新兴脱氮除磷技术得以应用。

  ANAMMOX-SHARON 组合工艺。

  1994年,荷兰Delft大学开发了厌氧氨氧化(ANAMMOX)技术,厌氧氨氧化菌在缺氧环境中,能够将铵离子(NH4+)用亚硝酸根(NO2-)氧化为氮气。

  该工艺与传统反硝化工艺相比是完全自养,不需任何有机碳源。

  1998年,荷兰Delft大学基于短程硝化反硝化原理开发了SHARON工艺,首例工程在荷兰鹿特丹DOKHAVEN水厂。其基本原理是在同一反应器内,先在有氧条件下利用亚硝化细菌将氨氧化成NO2-;然后再在缺氧条件下已有机物为电子供体将亚硝酸盐反硝化,形成氮气。工艺流程缩短且无需加碱中和。与传统活性污泥法相比可减少25%的供氧量及40%的反硝化碳源,有利于资源能源的回收利用,更适用于碳氮比浓度较低的城市废水。

  目前,以SHARON工艺为硝化反应器,ANAMMOX工艺为反硝化反应器,与传统工艺相比能够节省60%的供氧和100%的碳源。


  三级处理阶段


  近十几年,随着污染加剧,水资源短缺严重,人类对水质提出了更高的要求,污水深度处理与回用技术兴起。污水处理厂的侧重点不再是核算污染物的排放量,而是如何改善水质。膜技术开始显现其独特优势。

  生物膜技术在20世纪60-70年代,随着新型合成材料的大量涌现再次发展起来,主要工艺有生物滤池、生物转盘、生物接触氧化、生物流化床等。目前,应用较多的膜处理技术主要有微滤(MF)、超滤(UF)、反渗透(RO)和膜生物反应器(MBR)技术。本世纪初的新加坡“Newwater ”水厂就是采用在二级处理后加超滤膜及反渗透膜的方式进行再生水回用处理。

  以史为鉴,可知兴替。回顾整个历史过程,城市生活污水处理的足迹随着人类健康的需求、水环境质量的变化、污水的处理程度在一级级的加深,同时操作管理、资金占地等成本问题又推动了水处理工艺技术的不断进化,其操作、占地、程序步骤、能源资源的投入都在一点点地简化。人们对水质的需求越来越高,而处理过程却越来越趋于简便。有趣的是,无论近几年业界所看好的厌氧生物技术还是源分离最终的土地灌溉,城市污水处理似乎又回到了它最初的形式,尽管其中蕴含的科技含量早已不可同日而语。大繁若简,最终还是归于自然。